Patient-based benefit-risk assessment of medicines: development, refinement, and validation of a content search strategy to retrieve relevant studies

Authors

DOI:

https://doi.org/10.5195/jmla.2022.1306

Keywords:

patient-based benefit-risk assessment, benefit-risk assessment, attribute development, patient preference, prescription drug, risk assessment/methods, databases, bibliographic, information storage and retrieval/methods, Information Storage and Retrieval/standards, Medical Subject Headings, terminology as topic, reproducibility of results

Abstract

Introduction: Poor indexing and inconsistent use of terms and keywords may prevent efficient retrieval of studies on the patient-based benefit-risk assessment (BRA) of medicines. We aimed to develop and validate an objectively derived content search strategy containing generic search terms that can be adapted for any search for evidence on patient-based BRA of medicines for any therapeutic area.

Methods: We used a robust multistep process to develop and validate the content search strategy: (1) we developed a bank of search terms derived from screening studies on patient-based BRA of medicines in various therapeutic areas, (2) we refined the proposed content search strategy through an iterative process of testing sensitivity and precision of search terms, and (3) we validated the final search strategy in PubMed by firstly using multiple sclerosis as a case condition and secondly computing its relative performance versus a published systematic review on patient-based BRA of medicines in rheumatoid arthritis.

Results: We conceptualized a final search strategy to retrieve studies on patient-based BRA containing generic search terms grouped into two domains, namely the patient and the BRA of medicines (sensitivity 84%, specificity 99.4%, precision 20.7%). The relative performance of the content search strategy was 85.7% compared with a search from a published systematic review of patient preferences in the treatment of rheumatoid arthritis. We also developed a more extended filter, with a relative performance of 93.3% when compared with a search from a published systematic review of patient preferences in lung cancer.

References

Stowasser DA, Allinson YM, O'Leary M. Understanding the medicines management pathway. JPPR. 2004;34(4):293–6.

Muhlbacher AC, Juhnke C, Beyer AR, Garner S. Patient-focused benefit-risk analysis to inform regulatory decisions: the European Union perspective. Value Health. 2016;19(6):734–40.

Curtin F, Schulz P. Assessing the benefit: risk ratio of a drug-randomized and naturalistic evidence. Dialogues Clin Neurosci. 2011;13(2):183–90.

Eichler HG, Abadie E, Raine JM, Salmonson T. Safe drugs and the cost of good intentions. N Engl J Med. 2009;360(14):1378–80.

Harrison M, Milbers K, Hudson M, Bansback N. Do patients and health care providers have discordant preferences about which aspects of treatments matter most? Evidence from a systematic review of discrete choice experiments. BMJ Open. 2017;7(5):e014719.

El Masri H, Hollingworth SA, van Driel M, Benham H, McGuire TM. Real-world questions and concerns about disease-modifying antirheumatic drugs (DMARDs): a retrospective analysis of questions to a medicine call center. BMC Rheumatol. 2020;4:27.

Gabriel SE, Normand SLT. Getting the methods right — the foundation of patient-centered outcomes research. N Engl J Med. 2012;367(9):787–90.

Postmus D, Mavris M, Hillege HL, Salmonson T, Ryll B, Plate A, Moulon I, Eichler H-G, Bere N, Pignatti F. Incorporating patient preferences into drug development and regulatory decision making: results from a quantitative pilot study with cancer patients, carers, and regulators. Clin Pharmacol Ther. 2016;99(5):548–54.

Marsh K, Lanitis T, Neasham D, Orfanos P, Caro J. Assessing the value of healthcare interventions using multi-criteria decision analysis: a review of the literature. PharmacoEconomics. 2014;32(4):345–65.

Clark MD, Determann D, Petrou S, Moro D, de Bekker-Grob EW. Discrete choice experiments in health economics: a review of the literature. Pharmacoeconomics. 2014;32(9):883–902.

Facey K, Boivin A, Gracia J, Hansen HP, Lo Scalzo A, Mossman J, Single A. Patients' perspectives in health technology assessment: a route to robust evidence and fair deliberation. Int J Technol Assess Health Care. 2010;26(3):334–40.

Dirksen CD. The use of research evidence on patient preferences in health care decision-making: issues, controversies and moving forward. Expert Rev Pharmacoecon Outcomes Res. 2014;14(6):785–94.

Coast J, Al-Janabi H, Sutton EJ, Horrocks SA, Vosper AJ, Swancutt DR, Flynn TN. Using qualitative methods for attribute development for discrete choice experiments: issues and recommendations. Health Econ. 2012;21(6):730–41.

Selva A, Sola I, Zhang Y, Pardo-Hernandez H, Haynes RB, Martinez Garcia L, Navarro T, Schünemann H, Alonso-Coello P.. Development and use of a content search strategy for retrieving studies on patients' views and preferences. Health Qual Life Outcomes. 2017;15(1):126.

Wessels M, Hielkema L, Weijden T. How to identify existing literature on patients' knowledge, views, and values: the development of a validated search filter. J Med Libr Assoc. 2016;104:320–4.

Greenhalgh T, Humphrey C, Woodard F. User involvement in health care. Hoboken, NJ: Wiley-Blackwell/BMJ Books; 2011.

Zhang L, Jiang S, Ren C, Gao C. Is long-term warfarin therapy necessary in Chinese patients with atrial fibrillation after bioprosthetic mitral valve replacement and left atrial appendage obliteration? Heart Surg Forum. 2015;18(1):E11–16.

Jenkins M. Evaluation of methodological search filters--a review. Health Info Libr J. 2004;21(3):148–63.

Glanville J, Bayliss S, Booth A, Dundar Y, Fernandes H, Fleeman ND, Foster L, Fraser C, Fry-Smith A, Golder S, Lefebvre C, Miller C, Paisley S, Payne L, Price A, Welch K. So many filters, so little time: the development of a search filter appraisal checklist. J Med Libr Assoc. 2008;96(4):356–61.

Hausner E, Waffenschmidt S, Kaiser T, Simon M. Routine development of objectively derived search strategies. Syst Rev. 2012;1:19.

Pols DH, Bramer WM, Bindels PJ, van de Laar FA, Bohnen AM. Development and validation of search filters to identify articles on family medicine in online medical databases. Ann Fam Med. 2015;13(4):364–6.

Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CDA, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray K, Danesh J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, Mosenzon O, Kato E, Cahn A, Furtado R, Bhatt DL 1, Leiter LA, McGuire DK, Wilding J, Sabatine MS.. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–39.

Fitchett D, Inzucchi SE, Cannon CP, McGuire DK, Scirica BM, Johansen OE, Sambevski S, Kaspers S, Pfarr E, George JT, Zinman B. Empagliflozin reduced mortality and hospitalization for heart failure across the spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial. Circulation. 2019;139(11):1384–95.

Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, Huikuri HV, Johansson I, Jüni P, Lettino M, Marx M, Mellbin LG, Östgren CJ, Rocca B, Roffi M, Sattar N, Seferović PM, Sousa-Uva M, Valensi P, Wheeler DC, ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.

Joy SM, Little E, Maruthur NM, Purnell TS, Bridges JF. Patient preferences for the treatment of type 2 diabetes: a scoping review. Pharmacoeconomics. 2013;31(10):877–92.

McSharry J, McGowan L, Farmer AJ, French DP. Perceptions and experiences of taking oral medications for the treatment of Type 2 diabetes mellitus: a systematic review and meta-synthesis of qualitative studies. Diabet Med. 2016;33(10):1330–8.

Ho GJ, Liew SM, Ng CJ, Hisham Shunmugam R, Glasziou P. Development of a search strategy for an evidence based retrieval service. PloS One. 2016;11(12):e0167170.

Lessick S. The Medical Library Association essential guide to becoming an expert searcher: proven techniques, strategies, and tips for finding health information. J Med Libr Assoc. 2009 Apr;97(2):153–55.

Webster AC, Cross NB, Mitchell R, Craig JC. How to get the most from the medical literature: searching the medical literature effectively. Nephrology (Carlton). 2010;15(1):12–19.

Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D, Clanet M, Comi G, Derfuss T, Fazekas F, Hartung HP, Havrdova E, Hemmer B, Kappos L, Liblau R, Lubetzki C, Marcus E, Miller DH, Olsson T, Pilling S, Selmaj K, Siva A, Sorensen PS, Sormani MP, Thalheim C, Wiendl H, Zipp F.ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler. 2018;24(2):96–120.

Cocco E, Caoci A, Lorefice L, Marrosu MG. Perception of risk and shared decision making process in multiple sclerosis. Expert Rev Neurother. 2017;17(2):173–80.

Eskyte I, Manzano A, Pepper G, Pavitt S, Ford H, Bekker H, Chataway J, Schmierer K, Meads D, Webb E, Potrata B. Understanding treatment decisions from the perspective of people with relapsing remitting multiple sclerosis: a critical interpretive synthesis. Mult Scler Relat Disord. 2019;27:370–7.

Reen GK, Silber E, Langdon DW. Multiple sclerosis patients' understanding and preferences for risks and benefits of disease-modifying drugs: a systematic review. J Neurol Sci. 2017;375:107–22.

Webb EJD, Meads D, Eskyte I, King N, Dracup N, Chataway J, Ford HL, Marti J, Pavitt SH, Schmierer K, Manzano A. A systematic review of discrete-choice experiments and conjoint analysis studies in people with multiple sclerosis. Patient. 2018;11(4):391–402.

Haynes RB, Wilczynski NL. Optimal search strategies for retrieving scientifically strong studies of diagnosis from Medline: analytical survey. BMJ (Clinical research ed). 2004;328(7447):1040.

Hoogendam A. Evaluation of PubMed filters used for evidence-based searching: validation using relative recall. J Med Libr Assoc. 2009;97(3):186–93.

Littell JH, Corcoran J, Pillai V. Systematic reviews and meta-analysis. New York: Oxford University Press; 2008.

Mühlbacher A, Bethge S. First and foremost battle the virus: eliciting patient preferences in antiviral therapy for hepatitis c using a discrete choice experiment. Value Health. 2016;19(6):776–87.

Yu T, Enkh-Amgalan N, Zorigt G. Methods to perform systematic reviews of patient preferences: a literature survey. BMC Med Res Methodol. 2017;17(1):166.

Eiring Ø, Landmark BF, Aas E, Salkeld G, Nylenna M, Nytrøen K. What matters to patients? A systematic review of preferences for medication-associated outcomes in mental disorders. BMJ Open. 2015;5(4):e007848

Durand C, Eldoma M, Marshall DA, Bansback N, Hazlewood GS. Patient preferences for disease-modifying antirheumatic drug treatment in rheumatoid arthritis: a systematic review. J Rheumatol. 2020;47(2):176–87.

Sugitani Y, Sugitani N, Ono S. Quantitative preferences for lung cancer treatment from the patients' perspective: a systematic review. Patient. 2020;13(5):521–36.

Ferraz MB, Pinheiro GR, Helfenstein M, Albuquerque E, Rezende C, Roimicher L, Brandao L, Silva SC, Pinheiro GC, Atra E. Combination therapy with methotrexate and chloroquine in rheumatoid arthritis. A multicenter randomized placebo-controlled trial. Scand J Rheumatol. 1994;23(5):231–6.

Damarell RA, Tieman JJ, Sladek RM. OvidSP Medline-to-PubMed search filter translation: a methodology for extending search filter range to include PubMed's unique content. BMC Med Res Methodol. 2013;13:86.

Scholl I, Zill JM, Harter M, Dirmaier J. An integrative model of patient-centeredness - a systematic review and concept analysis. PloS One. 2014;9(9):e107828.

Muhlbacher AC, Juhnke C. Patient preferences versus physicians' judgement: does it make a difference in healthcare decision making? Appl Health Econ Health Policy. 2013;11(3):163–80.

Bak G, Mierzwinski‐Urban M, Fitzsimmons H, Morrison A, Maden‐Jenkins M. A pragmatic critical appraisal instrument for search filters: introducing the CADTH CAI. Health Info Libr J. 2009;26(3):211–9.

ISSG Search Filter Resource [Internet]. Glanville J, Lefebvre C, Manson P, Robinson S and Shaw N, editors. York (UK): The InterTASC Information Specialists' Sub-Group; 2006 [cited 15 March 2021]. <http://sites.google.com/a/york.ac.uk/issg-search-filters-resource/home>.

Abolfazli R, Elyasi A, Javadi MR, Gholami K, Torkamandi H, Amir-Shahkarami M, Etemadifar M, Nasr Z. Knowledge and attitude assessment of Iranian multiple sclerosis patients receiving interferon beta. Iran J Neurol. 2014;13(3):160–7.

Arenson K. Freedom to be altruistic: allowing for risk/knowledge ratios in decisions concerning multiple sclerosis research. Open Med. 2011;5(1):e26–27.

Arroyo R, Sempere AP, Ruiz-Beato E, Prefasi D, Carreño A, Roset M, Maurino J. Conjoint analysis to understand preferences of patients with multiple sclerosis for disease-modifying therapy attributes in Spain: a cross-sectional observational study. BMJ Open. 2017;7(3):e014433.

Barone DA, Singer BA, Merkov L, Rametta M, Suarez G. Survey of US patients with multiple sclerosis: comparison of the new electronic interferon beta-1b autoinjector (BETACONNECT™) with mechanical autoinjectors. Neurol Ther. 2016;5(2):155–67.

Bauer B, Brockmeier B, Devonshire V, Charbonne A, Wach D, Hendin B. An international discrete choice experiment assessing patients' preferences for disease-modifying therapy attributes in multiple sclerosis. Neurodegener Dis Manag. 2020.

Bayas A, Mäurer M. Teriflunomide for the treatment of relapsing-remitting multiple sclerosis: patient preference and adherence. Patient Prefer Adherence. 2015;9:265–74.

Beckmann H, Augustin M, Heesen C, Poettgen J, Blome C. Benefit evaluation in multiple sclerosis relapse treatment from the patients' perspective - Development and validation of a new questionnaire. Mult Scler Relat Disord. 2019;28:256–61.

Bichuetti DB, Franco CA, Elias I, Mendonça ACR, Carvalho LFD, Diniz DS, Tur C, Tintoré M, de Oliveira EML. Multiple sclerosis risk perception and acceptance for Brazilian patients. Arq Neuropsiquiatr. 2018;76(1):6–12.

Boeru G, Milanov I, De Robertis F, Kozubski W, Lang M, Rojas-Farreras S, Tomlinson M. ExtaviJect® 30G device for subcutaneous self-injection of interferon beta-1b for multiple sclerosis: a prospective European study. Med Devices (Auckl). 2013;6:175–84.

Bottomley C, Lloyd A, Bennett G, Adlard N. A discrete choice experiment to determine UK patient preference for attributes of disease modifying treatments in Multiple Sclerosis. J Med Econ. 2017;20(8):863–70.

Brown H, Gabriele S, White J. Physician and patient treatment decision-making in relapsing-remitting multiple sclerosis in Europe and the USA. Neurodegener Dis Manag. 2018;8(6):371–6.

Bruce JM, Bruce AS, Catley D, Lynch S, Goggin K, Reed D, Lim SL, Strober L, Glusman M, Ness AR, Jarmolowicz DP. Being kind to your future self: probability discounting of health decision-making. Ann Behav Med. 2016;50(2):297–309.

Bruce JM, Bruce AS, Lynch S, Thelen J, Lim SL, Smith J, Catley D, Reed DD, Jarmolowicz DP. Probability discounting of treatment decisions in multiple sclerosis: associations with disease knowledge, neuropsychiatric status, and adherence. Psychopharmacology (Berl). 2018;235(11):3303–13.

Bruce JM, Jarmolowicz DP, Lynch S, Thelen J, Lim SL, Smith J, Catley D, Bruce AS.How patients with multiple sclerosis weigh treatment risks and benefits. Health Psychol. 2018;37(7):680–90.

Carlin CS, Higuera L, Anderson S. Improving patient-centered care by assessing patient preferences for multiple sclerosis disease-modifying agents: a stated-choice experiment. Perm J. 2017;21:16–102.

Ceuninck van Capelle A, Meide HV, Vosman FJH, Visser LH. A qualitative study assessing patient perspectives in the process of decision-making on disease modifying therapies (DMT's) in multiple sclerosis (MS). PLoS One. 2017;12(8):e0182806.

Col NF, Solomon AJ, Springmann V, Garbin CP, Ionete C, Pbert L, Alvarez E, Tierman B, Hopson A, Kutz C, Morales IB, Griffin C, Phillips G, Ngo LH. Whose preferences matter? A patient-centered approach for eliciting treatment goals. Med Decis Making. 2018;38(1):44–55.

Col NF, Solomon AJ, Springmann V, Ionete C, Alvarez E, Tierman B, Kutz C, Morales IB, Griffin C, Ngo LH, Jones DE, Phillips G, Hopson A, Pbert L. Evaluation of a novel preference assessment tool for patients with multiple sclerosis. Int J MS Care. 2018;20(6):260–7.

de Seze J, Borgel F, Brudon F. Patient perceptions of multiple sclerosis and its treatment. Patient Prefer Adherence. 2012;6:263–73.

Fernández O, Duran E, Ayuso T, Hernández L, Bonaventura I, Forner M. Treatment satisfaction with injectable disease-modifying therapies in patients with relapsing-remitting multiple sclerosis (the STICK study). PLoS One. 2017;12(10):e0185766.

Fox RJ, Salter A, Alster JM, Dawson NV, Kattan MW, Miller D, Ramesh S, Tyry T, Wells BW, Cutter G. Risk tolerance to MS therapies: survey results from the NARCOMS registry. Mult Scler Relat Disord. 2015;4(3):241–9.

Frost N, Freeman J, Brixner D, Mort J, Clem J, Ngorsuraches S. Patients' preferences and willingness-to-pay for disease-modifying therapies. Mult Scler Relat Disord. 2019;35:55–60.

Garcia-Dominguez JM, Muñoz D, Comellas M, Gonzalbo I, Lizán L, Polanco Sánchez C. Patient preferences for treatment of multiple sclerosis with disease-modifying therapies: a discrete choice experiment. Patient Prefer Adherence. 2016;10:1945–56.

Glanz BI, Greeke E, LaRussa A, Stuart F, Rintell DJ, Chitnis T, Healy BC. Risk attitudes and risk perceptions in individuals with multiple sclerosis. Mult Scler J Exp Transl Clin. 2016;2:2055217316665406.

Goodwin E, Green C, Hawton A. What difference does it make? A comparison of health state preferences elicited from the general population and from people with multiple sclerosis. Value Health. 2020;23(2):242–50.

Heesen C, Kleiter I, Meuth SG, Krämer J, Kasper J, Köpke S, Gaissmaier W. Benefit-risk perception of natalizumab therapy in neurologists and a large cohort of multiple sclerosis patients. J Neurol Sci. 2017;376:181–90.

Heesen C, Kleiter I, Nguyen F, Schäffler N, Kasper J, Köpke S, Gaissmaier W. Risk perception in natalizumab-treated multiple sclerosis patients and their neurologists. Mult Scler. 2010;16(12):1507–12.

Hincapie AL, Penm J, Burns CF. Factors associated with patient preferences for disease-modifying therapies in multiple sclerosis. J Manag Care Spec Pharm. 2017;23(8):822–30.

Hofmann A, Stellmann JP, Kasper J, Ufer F, Elias WG, Pauly I, Repenthin J, Rosenkranz T, Weber T, Köpke S, Heesen C, MS Network Hamburg. Long-term treatment risks in multiple sclerosis: risk knowledge and risk perception in a large cohort of mitoxantrone-treated patients. Mult Scler. 2013;19(7):920–5.

Jarmolowicz DP, Bruce AS, Glusman M, Lim SL, Lynch S, Thelen J, Catley D, Zieber N, Reed DD, Bruce JM. On how patients with multiple sclerosis weigh side effect severity and treatment efficacy when making treatment decisions. Exp Clin Psychopharmacol. 2017;25(6):479–84.

Jarmolowicz DP, Reed DD, Bruce AS, Catley D, Lynch S, Goggin K, Lim SL, Strober L, Glusman M, Norouzinia AN, Bruce JM. Using EP50 to forecast treatment adherence in individuals with multiple sclerosis. Behav Processes. 2016;132:94–9.

Jarmolowicz DP, Reed DD, Bruce AS, Lynch S, Smith J, Bruce JM. Modeling effects of side-effect probability, side-effect severity, and medication efficacy on patients with multiple sclerosis medication choice. Exp Clin Psychopharmacol. 2018;26(6):599–607.

Köpke S, Kern S, Ziemssen T, Berghoff M, Kleiter I, Marziniak M, Paul F, Vettorazzi E, Pöttgen J, Fischer K, Kasper J, Heesen C. Evidence-based patient information programme in early multiple sclerosis: a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2014;85(4):411–8.

Kremer IE, Evers SM, Jongen PJ, van der Weijden T, van de Kolk I, Hiligsmann M. Identification and prioritization of important attributes of disease-modifying drugs in decision making among patients with multiple sclerosis: a nominal group technique and best-worst scaling. PLoS One. 2016;11(11):e0164862.

Kremer IEH, Evers S, Jongen PJ, Hiligsmann M. Comparison of preferences of healthcare professionals and MS patients for attributes of disease-modifying drugs: a best-worst scaling. Health Expect. 2018;21(1):171–80.

Lee Mortensen G, Rasmussen PV. The impact of quality of life on treatment preferences in multiple sclerosis patients. Patient Prefer Adherence. 2017;11:1789–96.

Lin PJ, Saret CJ, Neumann PJ, Sandberg EA, Cohen JT. Assessing the value of treatment to address various symptoms associated with multiple sclerosis: results from a contingent valuation study. Pharmacoeconomics. 2016;34(12):1255–65.

Lizán L, Comellas M, Paz S, Poveda JL, Meletiche DM, Polanco C. Treatment adherence and other patient-reported outcomes as cost determinants in multiple sclerosis: a review of the literature. Patient Prefer Adherence. 2014;8:1653–64.

Lynd LD, Henrich NJ, Hategeka C, Marra CA, Mittmann N, Evans C, Traboulsee AL. Perspectives of patients with multiple sclerosis on drug treatment: a qualitative study. Int J MS Care. 2018;20(6):269–77.

Lynd LD, Traboulsee A, Marra CA, Mittmann N, Evans C, Li KH, Carter M, Hategekimana C. Quantitative analysis of multiple sclerosis patients' preferences for drug treatment: a best-worst scaling study. Ther Adv Neurol Disord. 2016;9(4):287–96.

Mansfield C, Thomas N, Gebben D, Lucas M, Hauber AB. Preferences for multiple sclerosis treatments: using a discrete-choice experiment to examine differences across subgroups of US patients. Int J MS Care. 2017;19(4):172–83.

McDonnell GV, Marriott JJ. Patient-perceived risks of MS DMTs: problems of communication and risk management? Neurology. 2019;92(14):647–8.

McGinley MP, Cola PA, Fox RJ, Cohen JA, Corboy JJ, Miller D. Perspectives of individuals with multiple sclerosis on discontinuation of disease-modifying therapies. Mult Scler. 2019:1352458519867314.

Mendel R, Traut-Mattausch E, Frey D, Bühner M, Berthele A, Kissling W, Hamann J. Do physicians' recommendations pull patients away from their preferred treatment options? Health Expect. 2012;15(1):23–31.

Miller CE, Karpinski M, Jezewski MA. Relapsing-remitting multiple sclerosis patients' experience with natalizumab: a phenomenological investigation. Int J MS Care. 2012;14(1):39–44.

Poulos C, Kinter E, van Beek J, Christensen K, Posner J. Preferences of patients with multiple sclerosis for attributes of injectable multiple sclerosis treatments in the United Kingdom and France. Int J Technol Assess Health Care. 2018;34(4):425–33.

Poulos C, Kinter E, Yang JC, Bridges JF, Posner J, Gleißner E, Mühlbacher A, Kieseier B. A discrete-choice experiment to determine patient preferences for injectable multiple sclerosis treatments in Germany. Ther Adv Neurol Disord. 2016;9(2):95–104.

Poulos C, Kinter E, Yang JC, Bridges JF, Posner J, Reder AT. Patient preferences for injectable treatments for multiple sclerosis in the United States: a discrete-choice experiment. Patient. 2016;9(2):171–80.

Poulos C, Wakeford C, Kinter E, Mange B, Schenk T, Jhaveri M. Patient and physician preferences for multiple sclerosis treatments in Germany: a discrete-choice experiment study. Mult Scler J Exp Transl Clin. 2020;6(1):2055217320910778.

Rahimi F, Rasekh HR, Abbasian E, Peiravian F, Etemadifar M, Ashtari F, Sabzghabaee AM, Amirsadri MR. Patient preferences for Interferon-beta in Iran: a discrete choice experiment. PLoS One. 2018;13(3):e0193090. 100.

Rath L, Vijiaratnam N, Skibina O. Assessing understanding of individual risk and symptoms of progressive multifocal leukoencephalopathy in patients prescribed natalizumab for multiple sclerosis. Intern Med J. 2017;47(2):194–9.

Rosato R, Testa S, Oggero A, Molinengo G, Bertolotto A. Quality of life and patient preferences: identification of subgroups of multiple sclerosis patients. Qual Life Res. 2015;24(9):2173–82.

Salamonsen A. Mind the gap! Lay and medical perceptions of risks associated with the use of alternative treatment and conventional medicine. Forsch Komplementmed. 2015;22(1):24–29.

Salter AR, Marrie RA, Agashivala N, Belletti DA, Kim E, Cutter GR, Cofield SS, Tyry T. Patient perspectives on switching disease-modifying therapies in the NARCOMS registry. Patient Prefer Adherence. 2014;8:971–9.

Sempere AP, Vera-Lopez V, Gimenez-Martinez J, Ruiz-Beato E, Cuervo J, Maurino J. Using a multidimensional unfolding approach to assess multiple sclerosis patient preferences for disease-modifying therapy: a pilot study. Patient preference and adherence. 2017;11:995–9.

Shingler SL, Swinburn P, Ali S, Perard R, Lloyd AJ. A discrete choice experiment to determine patient preferences for injection devices in multiple sclerosis. J Med Econ. 2013;16(8):1036–42.

Syed M, Rog D, Parkes L, Shepherd GL. Patient expectations and experiences of multiple sclerosis interferon β-1a treatment: a longitudinal, observational study in routine UK clinical practice. Patient Prefer Adherence. 2014;8:247–55.

Thach AV, Brown CM, Herrera V, Sasane R, Barner JC, Ford KC, Lawson KA. Associations between treatment satisfaction, medication beliefs, and adherence to disease-modifying therapies in patients with multiple sclerosis. Int J MS Care. 2018;20(6):251–9.

Thakur K, Manuel L, Tomlinson M. Autoinjectors for administration of interferon beta-1b in multiple sclerosis: patient preferences and the ExtaviPro™ 30G and Betacomfort(®) devices. Pragmat Obs Res. 2013;4:19–26.

Tourbah A, Papeix C, Tourniaire P, Rerat K, Meite M, Durand B, Lamy F, Chouette I, Mekies C, ESGILE Study Group. Reasons for switching to fingolimod in patients relapsing-remitting multiple sclerosis in France: the ESGILE study. Mult Scler Relat Disord. 2020;46:102433.

Tur C, Tintoré M, Vidal-Jordana Á, Bichuetti D, Nieto González P, Arévalo MJ, Arrambide G, Anglada E, Galán I, Castilló J, Nos C, Río J, Martín MI, Comabella M, Sastre-Garriga J, Montalban X. Risk acceptance in multiple sclerosis patients on natalizumab treatment. PLoS One. 2013;8(12):e82796.

Turčáni P, Mašková J, Húska J. Real-world treatment patterns of disease modifying therapy (dmt) for patients with relapse-remitting multiple sclerosis and patient satisfaction with therapy: results of the non-interventional SKARLET study in Slovakia. Patient Prefer Adherence. 2020;14:1129–35.

Utz KS, Hoog J, Wentrup A, Berg S, Lämmer A, Jainsch B, Waschbisch A, Lee DH, Linker RA, Schenk T. Patient preferences for disease-modifying drugs in multiple sclerosis therapy: a choice-based conjoint analysis. Ther Adv Neurol Disord. 2014;7(6):263–75.

Visser LA, Louapre C, Uyl-de Groot CA, Redekop WK. Patient needs and preferences in relapsing-remitting multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2020;39:101929.

Visser LH, van der Zande A. Reasons patients give to use or not to use immunomodulating agents for multiple sclerosis. Eur J Neurol. 2011;18(11):1343–9.

Volpicelli Leonard K, Robertson C, Bhowmick A, Herbert LB. Perceived treatment satisfaction and effectiveness facilitators among patients with chronic health conditions: a self-reported survey. Interact J Med Res. 2020;9(1):e13029.

Wicks P, Brandes D, Park J, Liakhovitski D, Koudinova T, Sasane R. Preferred features of oral treatments and predictors of non-adherence: two web-based choice experiments in multiple sclerosis patients. Interact J Med Res. 2015;4(1):e6.

Wilkie DD, Solari A, Nicholas R. Initiating disease-modifying treatments in multiple sclerosis: measuring the decision process using decisional conflict and decisional regret scales. Mult Scler J Exp Transl Clin. 2019;5(1):2055217319833006.

Wilson L, Loucks A, Bui C, Gipson G, Zhong L, Schwartzburg A, Crabtree E, Goodin D, Waubant E, McCulloch C. Patient centered decision making: use of conjoint analysis to determine risk-benefit trade-offs for preference sensitive treatment choices. J Neurol Sci. 2014;344(1–2):80–87.

Wilson LS, Loucks A, Gipson G, Zhong L, Bui C, Miller E, Owen M, Pelletier D, Goodin D, Waubant E, McCulloch C. Patient preferences for attributes of multiple sclerosis disease-modifying therapies: development and results of a ratings-based conjoint analysis. Int J MS Care. 2015;17(2):74–82.

Zimmer A, Bläuer C, Coslovsky M, Kappos L, Derfuss T. Optimizing treatment initiation: effects of a patient education program about fingolimod treatment on knowledge, self-efficacy and patient satisfaction. Mult Scler Relat Disord. 2015;4(5):444–50.

Downloads

Published

2021-11-28

Issue

Section

Original Investigation